
Loop Diagonalization

Vedant Kumar

October 27, 2014



Overview

I Loop/matrix equivalence

I Fast exponentiation through diagonalization

I Writing the llvm::LoopPass



Loop/matrix equivalence

Some loops can be fully described by a matrix.



Loop/matrix equivalence

function fib(n)
a← 1
b ← 1
for i ∈ [2...n] do

tmp ← a
a← b
b ← tmp + b

end for
return b

end function



Loop/matrix equivalence

function fib(n)
~v ← [1, 1]T

for i ∈ [2...n] do

~v ←
[

0 1
1 1

]
~v

end for
return ~v [2]

end function

Cost: n matrix multiplications, O(nm3)



Fast exponentiation through diagonalization

M~v = λi~v

MP = P

λ1 0 0
0 λ2 0

0 0
. . .


M = PDP−1



Fast exponentiation through diagonalization

M2 = (PDP−1)2

= (PDP−1)(PDP−1)

= (PD)(DP−1)

= PD2P−1

Mn = PDnP−1 (induction)

Cost: 1 diagonal matrix exponentiation, Θ(m log2 n)
(Repeated squaring algorithm on m eigenvalues)



Fast exponentiation through diagonalization

function fib(n)
[a, b]T ← PDn−1P−1[1, 1]T

return b
end function

Cost: Θ(m3 + m log2 n)

Why? The compiler diagonalized the loop!

Mn =

[
1 φ
φ −1

] [
φ 0
0 1− φ

]n [
1 φ
φ −1

]−1

=

[
1 φ
φ −1

] [
φn 0
0 (1− φ)n

] [
1 φ
φ −1

]−1



Writing the llvm::LoopPass

I Filter away unsupported loops

I DFS on instruction graph to build coefficient matrix, M

I EigenSolver(M).eigenvalues().asDiagonal()

I loop->replaceSuccessorsPhiUsesWith(...)

I loop->eraseFromParent()



The end

Thank you. Any questions?

→ Full paper
→ Source code (requires 3.4, update to 3.5 still WIP)

http://net.vedantk.com/static/loop-tx.pdf
https://github.com/vedantk/auto-diagonalize

