
A Survey of Shape Analysis Techniques

Vedant Kumar, vsk@berkeley.edu

May 11, 2014

1 Introduction

Shape analysis techniques statically determine whether the contents of a program’s memory can satisfy

a set of structural invariants. The basic problems in shape analysis are (1) to decompose a program into a

set of locations, (2) to conservatively determine what these locations point to, and (3) to use this ‘points-to’

information to uncover the shape of in-memory structures. In short, the goal of shape analysis is to answer

questions about a program’s memory-usage patterns without actually running it.

The ability to answer these questions is powerful and broadly applicable. For example, in the field of

compile-time optimization the task of automatically transforming a program into parallel fragments requires

shape analysis to flag conflicting memory operations [LH88]. The graph structures used in several shape

analysis methods (e.g [HPR89], [LH88], and [SRW96]) are amenable to solving this problem and related

dependence analysis problems. In the field of program verification, shape analysis can be used to check

if variables satisfy sophisticated invariants such as ‘is-a-list?’, ‘is-a-tree?’, and ‘contains-cycles?’ [SRW96].

Static enforcement of such shape invariants is useful.

This paper is organized in a top-down fashion. So far in Section 1 we have characterized shape analysis,

stated the basic problems in the field, and motivated further study. Section 2 delves into the fundamental

approaches to solving shape analysis problems. Section 3 discusses the main achievements in the field.

Section 4 presents the challenges remaining in the field, and Section 5 concludes.

2 Solving shape analysis problems

There are different approaches to solving the shape analysis problem. Instead of describing each approach

individually, we discuss their commonalities and make generalizations whenever appropriate. In this section,

we focus on the following recurring motifs: specialized program representation, abstract interpretation, and

the construction of shape graphs via lattice operations.

1

2.1 Program representation

The choice of program representation affects the scope and complexity of any analysis. In the literature

there are two common classes of representations. The first is the Lisp-y cons-cell model espoused by [JM82],

[LH88], and [SRW96]. The other is the C-like model employed by [Steen95], [AG01], and [KS13]. The Lisp

model handles loads, stores, reference passing, and recursive data structures. The C model is similar, but

considers pointer dereferencing and a slew of unsafe memory operations as well. While the C model enables

analysis of a larger class of programs, some authors eschew it in order to focus on fundamentals. Apart from

the choice of program representation, preprocessing is a common way to simplify analyses. For example, ‘kill’

instructions are injected before all assignments in [SRW96] to make the dataflow relations more compact.

Such ‘frontend-level’ differences can be significant and drive diversity in the literature.

2.2 Abstract interpretation

Abstract interpretation is akin to normal program interpretation (i.e execution), but with a specialized

operational semantics. The key ideas are (1) to replace concrete program values with abstract values, and

(2) to simulate the resulting program under the new operational semantics. Shape analysis algorithms utilize

abstract interpretation to compute dataflow relations between the various locations in a program, resulting

in a model of in-memory structures.

The first step in abstract interpretation is to safely replace concrete program values with abstract ones.

In [JM82] 1, the authors specify a concrete-value lattice A, an accompanying abstract approximation lattice

A′, and a pair of functions which translate between the two lattices: abs : A→ A′ and conc : A′ → A. They

then state an important safe approximation criterion: given an n-ary concrete operation ϕ : An → A, an

approximation operation ϕ′ : (A′)n → A′ is safe if for all a1, ..., an: {abs(ϕ(a1, ..., an)) | ∀i.ai ∈ conc(a′i)} v

ϕ′(a′1, ..., a
′
n). The intuition behind this requirement is that the abstract n-ary operation must contain all

values that result from abstracting any feasible concrete version of the abstract operation. All operations in

the abstract operational semantics must satisfy this criterion.

The second step in abstract interpretation is to define concrete and abstract versions of the program

state. In [JM82], the concrete state of a program is an element σ ∈ Q × A × L, where Q is the set of

control-flow edges and L is the set of locations. The abstract state replaces the location set with a token

set T . In addition, each state is equipped with a partial retrieval function (τ : T → A′ × 2T×T), which

either maps tokens to atomic abstract values, or to two more tokens. These τ -functions allow the abstract

representation to model exactly two program data types: atomic values and binary lists.

1To focus our discussion, we treat definitions from [JM82] as representative throughout this subsection.

2

The third step in abstract interpretation is to define the semantic action of each program construct. This

is a difficult but mechanical step, so we curtail its discussion here. It suffices to say that coupled with an

equivalence relation on abstract states, these semantics allow computation of the subset S′ ⊆ ∆ of reachable

states in a program. The set ∆ is ordered by subset inclusion: by the Tarski-Knaster theorem, a least

fixed-point to a function f : ∆ → ∆ exists provided that there are no infinitely ascending chains in ∆ and

that f is continuous. Let f be our abstract simulation function: we iterate it until the least fixed-point is

reached, thereby completing the abstract interpretation. This simulation can capture accurate descriptions

of recursive data structures, perform interprocedural analysis, and trade speed for precision by adjusting its

token sets. It is a flexible and foundational concept.

2.3 Shape graphs

Shape graphs are an alternate form of abstract state representation introduced in [SRW96]. We focus on

shape graphs because they have been used to drive key advances in the field. The shape graph is conceptually

similar to the alias graph in [LH88] and (to some extent) the retrieval functions of [JM82], so our discussion

will not be too idiosyncratic. We define shape graphs 2, examine how they are constructed, discuss some

interesting properties, and compare them to other abstract state representations.

The shape graph is a finite digraph consisting of shape nodes, variable edges, and selector edges. It is

formally defined as a tuple 〈Es, Ev〉 in [SRW96]. Variable edges of the form [x, n] reside in Ev, where x is a

pointer variable and n is a shape node (i.e a graph vertex). Selector edges of the form [s, sel, t] reside in Es,

where sel is a selector and s and t are shape nodes. The sets Ev and Es fully describe the shape graph. The

class of deterministic shape graphs is DSG: it contains graphs which may only represent the ephemeral effects

of one execution sequence. Formally, graphs in DSG satisfy ∀x.|Ev(x)| ≤ 1 and ∀x.∀sel.|Es(x, sel)| ≤ 1. We

require a separate class of static shape graphs to conservatively represent subsets of DSG for our abstract

semantics. This new class is the lattice SSG, ordered by component-wise subset inclusion.

Our goal of computing useful static program representations is within reach. First, we define a concrete

semantics as a DSG-transformer: [[st]]DSG : DSG → DSG. Second, we represent the control flow nodes of the

program as a set V . Third, we define a collecting semantics, c : V → 2DSG , which generates all feasible de-

terministic shape graphs for a given program point. Explicitly, c(v) = {[[st(vk)]]DSG(..., [[st(v1)]]DSG(〈φ, φ〉)) |

v1, ..., vk ∈ pathsTo(v)}, where pathsTo : V → 2V yields all paths through the CFG which may transition

to v. Next, we define an abstraction function, α : 2DSG → SSG. Finally, we define the abstract semantics

as a SSG-transformer: [[st]]SSG : SSG → SSG. Putting all the pieces together, the shape analysis algorithm

can be thought of as the function composition α ◦ c : V → 2DSG → SSG followed by a fixed-point iteration.

2All results in this subsection are drawn directly from [SRW96], unless explicitly mentioned otherwise.

3

A discussion of the exact concrete and abstract semantics is omitted because it would require pages of dense

equations and exposition. For reference, figures 2 and 6 in [SRW96] fully specify [[st]]DSG,SSG .

Shape graphs have interesting properties, such as a fluid naming scheme and strong nullification. The

naming scheme is simple: the shape nodes at a given CFG node v are named by the set of v-local variables

which all point to the same run-time location. Variables can be added, removed, and moved between shape

nodes to model DSG-transformations as precisely as possible. Shape nodes are not forced to irreversibly

partion memory with a fixed variable labelling: they may be materialized (split into more granular nodes)

as well as un-materialized (coalesced into summary nodes) as necessary. The variable-set naming scheme

enables the second property, strong nullification, the condition that all variable edges emanating from a shape

node are removed on a nil-assignment. This can be expressed as [[x := nil]]SSG(〈Ev, Es〉) ≈ 〈Ev − [x, ∗], Es〉

where all shape nodes nX s.t x ∈ X are renamed to nX−{x}
3. Strong nullification is cited as a crucial

factor in model-checking the ‘is-list?’ invariant on list reversal functions: without it, it would be difficult to

precisely distinguish the list head pointers of the old and new lists.

In comparison to the method described in [JM82], the shape graph formalism permits more flexibility

in terms of supported structural invariants. We are not limited to atoms and binary lists, and have a

straightforward way to model-check new structures using graph traversal methods. In comparison to the

alias graphs presented in [LH88], shape graphs have a simplfied naming scheme which dispenses with access

path concatenation and aggregate labels (i.e node names containing regular expressions). While conceptually

similar, these two structures are motivated in very different contexts. The method presented in [LH88] solves

the alias analysis problem in order to detect structure access conflicts, while alias analysis is proposed as a

basic extension of the method from [SRW96]. Clearly, alias analysis, pointer analysis, and shape analysis

are highly interrelated topics.

3 Main achivements

The results in [SRW02] stand out as major achievements in shape analysis. First, the authors characterize

the abstract state representations used in previous works as variants of the shape graph. They then build

upon shape graphs to create a logical framework for expressing a wide range of structural invariants. These

invariants are highly expressive: they may encode type information, structure connectivity properties, as well

as ordering properties. In addition, the authors implemented a domain-specific language for ‘programming’

these invariants. An analyzer-generator was implemented to transform these invariants into a program that

enforces them. These results are significant for their general nature and emphasis on practicality.

3We omit some details here for simplicity. The actual abstract semantics are not defined in this way.

4

Over the years there have been several other major achievements in the field. Shape analysis techniques

may be applied interprocedurally, due to consistent consideration throughout the literature (e.g in [JM82],

[LH88], [SRW*], etc). Work has also been done to reduce the space complexity of shape analysis: merged

shape nodes are discussed in [SRW96], while summary nodes and compact hammock graphs are discussed

in [LH88]. In [AG98], implmentation techniques are established to make dataflow analysis more efficient

(notably demand-driven analysis). The popular work from [Steen95], Steensgaard’s almost linear-time points-

to algorithm, has been widely implemented (e.g in the LLVM compiler framework).

4 Limitations and open problems

According to results cited in [LH88], precisely solving the structural alias problem is NP-complete, placing

fundamental limits on the efficiency of shape analysis algorithms. Moreover, we are faced with an unavoidable

loss of precision when collapsing sets of deterministic shape graphs into a single static shape graph. Language

features such as non-determinism, destructive updating, and recursion make perfectly precise static shape

analysis impossible. It is not clear how to quantify the loss of precision, or if there are techniques that

minimize this loss for certain classes of programs. Space limits are also a pressing issue: some algorithms use

hardcoded size limits on shape nodes (e.g sl limits in [LH88]) or perform merging in order to keep graphs

compact, at the expense of precision. Supporting interprocedural analysis and context sensitivity exacerbates

the time and space complexity concerns mentioned earlier. Parallelizing the shape analysis algorithm to take

advantage of SMP and distributed systems is an underexplored problem. A final non-trivial problem is the

difficulty of implementing shape analysis techniques for complex, unsafe languages such as C++.

5 Conclusion

Shape analyses determine the structure of dynamically-updated storage statically, answering questions

about how memory is organized. In the area of program verification, shape analysis can be used to statically

perform model-checking of functions and structural invariants. In the area of optimization, the closely-

related alias analysis and pointer analysis algorithms are crucial for inferring data dependences. Important

optimizations such as lifting instructions out of loops, code-elimination, and instruction reordering heavily

depend upon this information.

In summary, we have defined shape analysis and discussed its applicability. Common features of shape

analysis algorithms are explained in some detail, and some comparative notes are included. Finally, the

achievements, limits and open problems of the field are presented.

5

6 Bibliography

1. D. Atkinson and W. Griswold. Effective Whole-Program Analysis in the Presence of Pointers. In SIG-

SOFT ’98/FSE-6 Proceedings of the 6th ACM SIGSOFT’, pages 46-55, 1998.

2. D. Atkinson and W. Griswold. Implementation Techniques for Efficient Data-Flow Analysis of Large

Programs. In Proceedings of the International Conference on Software Maintenance, pages 52-61, 2001.

3. LLVM, http://llvm.org/.

4. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence Analysis for Pointer Variables. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 28-40, 1989.

5. N. Jones and S. Muchnick. A Flexible Approach to Interprocedural Data Flow Analysis and Programs

with Recursive Data Structures. In ACM Symposium on Principles of Programming Languages, pages

66-74, 1982.

6. G. Kastrinis and Y. Smaragdakis. Hybrid Context-Sensitivity for Points-To Analysis. In Proceedings

of the 34th ACM SIGPLAN conference on Programming Language Design and Implementation, pages

423-434, 2013.

7. J. Larus and P. Hilfinger. Detecting Conflicts Between Structure Accesses. In SIGPLAN Conference on

Programming Language Design and Implementation, pages 21-34, 1988.

8. M. Sagiv, T. Reps, and R. Wilhelm. Solving Shape-Analysis Problems in Languages with Destructive

Updating. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1996.

9. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. In ACM Symposium

on Principles of Programming Languages. 2002.

10. B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT symposium on Principles of Programming Languages, pages 32-41, 1996.

11. T. Tok, S. Guyer, and C. Lin. Efficient Flow-Sensitive Interprocedural Data-Flow Analysis in the Presence

of Pointers. In LNCS, Springer-Verlag, pages 17-31, 2006.

12. X. Zhang, M. Naik, and H. Yang. Finding Optimum Abstractions in Parametric Dataflow Analysis. In

Proceedings of the 34th ACM SIGPLAN conference on Programming Language Design and Implementa-

tion, pages 365-375, 2013.

6

http://llvm.org/

	Introduction
	Solving shape analysis problems
	Program representation
	Abstract interpretation
	Shape graphs

	Main achivements
	Limitations and open problems
	Conclusion
	Bibliography

